
1

Design & Development of a Re-Programmable Embedded

Systems : A Practical Approach based on

8051 architecture

 (Experimental Manual For

B.Tech & M.Tech Students)

for SoC with support of ITRA

Designed & Developed By: Ms. Nidhi Agarwal

Under the Guidance of: Dr. SRN Reddy, Associate Professor, CSE

Computer Science & Engineering Department

Indira Gandhi Delhi Technical University for Women

Kashmere Gate, Delhi-110006

2

LIST OF EXPERIMENTS

Exp No. Description of experiment Page No.

Exp. 1

Design and develop a reprogrammable embedded computer

using 8051 microcontrollers and to show the following aspects.

1. Programming

2. Execution

3. Debugging

4-13

Exp. 2

To Demonstrate the Tool Chain for Keil IDE (Embedded

Systems Development Tool Chain) with the example of LED

Blinking Program.

14-16

Exp. 3

To demonstrate the procedure for flash programming for

reprogrammable embedded system board using NXP’s

FlashMagic.

17-20

Exp. 4

To demonstrate the procedure of flash programming source

code for reprogrammable embedded system board using

Sunrom technology’s 89SXX USB flash programmer, ISP Model:
1315.

21-26

Exp. 5

To demonstrate the procedure and connections for multiple

controllers programming of same type of controller with same

source code in one go, using flash magic.

27-28

Exp. 6

To interface 8 LEDs at Input-output port and create different

patterns.

29-30

Exp. 7

To demonstrate use of general purpose port i.e. Input/ output

port of two controllers for data transfer between them.

31-32

Exp. 8

To demonstrate block wise programming of memory for micro

controller using flash magic.

33-36

Exp. 9

To demonstrate block wise erasing of memory for micro

controller using flash magic.

37-39

Exp. 10

To demonstrate timer working in timer mode and blink LED

without using any loop delay routine.

40

Exp. 11

To demonstrate interfacing of seven-segment LED display and

generate counting from 0 to 99 with fixed time delay.

41-42

3

Exp.12

To demonstrate serial communication between PC and

controller using serial UART of controller.

43-47

Exp. 13

To demonstrate communication between two controllers using

SPI in master mode. Only master will send and Slave will

receive.

48-50

Exp. 14

To demonstrate communication between two controllers using

SPI in master and slave mode. Master will send, Slave will

receive and vice versa.

51-53

Exp. 15

To demonstrate interfacing of 16x2 LCD and print some

welcome message on it.
54-57

4

Experiment 1

Design and development of a Reprogrammable Embedded System

(Computer) (RES) using 8051 Microcontroller (MC)

1.1 Objective: Design and develop a reprogrammable embedded system board using 8051

microcontrollers and to show following aspects.

1. Programming

2. Execution

3. Debugging

1.2.1 Software Requirement: Editor for schematic drawing like Eagle.

https://www.cadsoftusa.com/download-eagle/freeware/

Or Protel.

http://protel-pcb.software.informer.com/1.5/

1.2.2 Hardware Requirement: Soldering Iron, Tweezer, Cutter, Multimeter, Components as per

table1.1.

1.3 Description:

1.3.1 Embedded System:- Embedded systems are those systems that are similar to computer (they

can be termed as computer on a chip) but are designed for some specific task, they may have lesser

components (be in size or in count) associated to it, then PC. They may or may not contain all

components of a computer system. For more definitions one may refer links below.

http://www.dauniv.ac.in/downloads/EmbsysRevEd_PPTs/Chap01Lesson_1Emsys.pdf

http://en.wikipedia.org/wiki/Embedded_system

Unlike PC, Embedded systems are designed to perform some specific task and generally are not

designed for performing multiple tasks.

1.3.2 Block Diagram of an Embedded System:

Figure 1.1: Block diagram of Embedded System

Microcontroller

Memory

Data Program
Output

Printer

LCD/LED

Input

Switch

Sensor

Clock

Peripheral Interface

I2C UART SPI ADC

Memory

Data Program

Input

Switch

Sensor

Peripheral Interface

I2C UART SPI ADC

Memory

Data Program

Input

Switch

Sensor

Peripheral Interface

I2C UART SPI ADC

Memory

Data Program
Output

Printer

LCD/LED

Clock

Microcontroller

Input

Switch

Sensor

Peripheral Interface

I2C UART SPI ADC

Memory

Data Program

https://www.cadsoftusa.com/download-eagle/freeware/
http://protel-pcb.software.informer.com/1.5/
http://www.dauniv.ac.in/downloads/EmbsysRevEd_PPTs/Chap01Lesson_1Emsys.pdf
http://en.wikipedia.org/wiki/Embedded_system

5

1.3.3 “Components of a Computer”

Basic component of an embedded system is its controller which could be a microprocessor unit (MPU)

or a microcontroller unit (MCU). MPU needs more peripherals to accomplish a task and hence results

in complex circuit and higher power consumption, whereas MCU units mostly have on chip

peripherals that includes memory elements like ROM/RAM, basic function elements like Timers/

Counters/ Interrupts and special interfaces like UART/ SPI/ I2C/CAN etc. and thus resulting in lesser

component count and lesser power consumption. For more information on difference between MPU

and MCU one may visit below mentioned sites.

http://www.atmel.in/Images/MCU_vs_MPU_Article.pdf

http://maxembedded.com/2011/06/05/mcu-vs-mpu/

 1.3.4 Re-programmable Embedded System (RES):- In its easiest definition, a re-programmable

embedded system is one which can be re programmed a number of times easily while in system or in

application and with minimum component requirement i.e. there is no need to pull out MCU every

time one wants to program it and hence provide flexibility in programming and operations. It is

developed using 8051 compatible microcontrollers manufactured by NXP/ Atmel. In addition to

execution of intended program RES also provide debugging facility and chip programming for other

users.

The Reprogrammable embedded system consists of:

 Sockets for placing microcontroller- 40 pin

 DC socket for external power supply (DC 5V)

 1 LED for power on indication and 1 push button for reset

 11.0592 MHz Quartz Crystal Oscillator

 8 LEDs for output pin state indication at port P0

 1 DIP switch (8 switch) for input pin activation

 Connector and driver for serial communication RS232

 Multiple-pin connectors for direct access to I/O ports

 Connector for SPI programming

 1 Piezo buzzer for audio/frequency output

 Additional power supply connectors

1.4 Selection of component for a given application

Every application circuit is build around some components which should be selected as per the

functionality of the application, availability of components, cost of entire system, procurement time

for components and most importantly meeting of some critical parameters of intended application.

1.4.1 Selection of Processor:

Selection should be based mainly on architecture, availability, cost, time to prototype and market,

testability and debug-ability. As per the requirement a microcontroller will be suitable for this purpose.

Intel/Atmel 8051 architecture is suitable for beginners due to its easy understandability, easy

http://www.atmel.in/Images/MCU_vs_MPU_Article.pdf
http://maxembedded.com/2011/06/05/mcu-vs-mpu/

6

availability of architecture description and instruction set. Some advance controllers of 8051

architecture provide boot-loader, in system programming and in application programming.

NXP’s P89V51RD2 and Atmel’s AT89S52 are such general purpose controllers, based on 8051

architecture. Re-programmability is achieved using ISP (In-System-Programming) feature provided by

NXP P89V51RD2 or by Atmel AT89S52. P89V51RD2 uses ISP by Atmel AT89S52. P89V51RD2

provides ISP feature using UART pins (RxD, TxD, RST, PSEN) while AT89S52 uses SPI pins

(MOSI, MISO, SCK, RST) for ISP functionality.

NXP’s P89V51RD2 and Atmel’s AT89S52 features include;

 8-bit, 40-pin controller in DIP package

 Operating voltage +5V

 Operating frequency 0 to 40 MHz

 32-Input / Output pins

 3-16 bit Timers

 8- Interrupt levels

 1-UART

 1-SPI

 1 KB of user RAM

 64 KB of Flash

1.4.2 Selection of other components:

1.4.2.1 Serial communication interface

UART (Universal Asynchronous Receiver Transmitter) is required for boot-loader/ ISP/IAP

programming and also for applications that include PC interfacing.

MAX232 is one such chip which provide serial communication interface between personal computer

and microcontroller chip. It is selected due to its easily availability and low cost. Operating voltage

requirement is +5V.

1.4.2.2 Oscillator

Oscillator is used as a clock signal generator. Crystal oscillators are used for their frequency stability

and hence should be chosen over other type of oscillators.

Piezo electric crystal oscillator of 11.0592MHz frequency is used here as this frequency is most

suitable for generation of precise baud rate and easy interfacing with PC. Besides, it is also possible to

select internal RC oscillator during chip programming/Operations.

1.4.2.3 Connector
DB9 Female PCB Mount:- 3 pins of DB9 connector (pin 2-RD, pin 3-TXD and pin 5-GND) are used

for connections between PC and UART IC i.e. MAX232.

Connectors for direct access to Ports
In order to enable microcontroller ports to be directly connected to additional components, each of

them is connected to 8 pin, on-board connector.

* Upper Port P1 is also used for providing SPI interface for flash programming.

1.4.2.4 Input Selection

7

8-DIP switches are provided on board here for interfacing with any of input port. Inputs from

sensors/ADC/PC may also be connected through port connectors.

1.4.2.5 Output Selection:

LED: 8-LEDs are connected at port0 with 1KOhm resistor network RN1. They may be used for

initial configurations and testing as well as to view outputs.

LCD: 16x2, LCD may be connected using I/O port connectors. They may be used for displaying

messages/values. LCD supports ASCII display.

Output at PC/DAC/Motors (through drivers) is also supported.

1.4.2.6 Power Supply

There is a connector on the development board enabling connection to external power supply source

(DC-5V). Besides, voltage necessary for device operation can also be obtained from PC via USB cable

at connector J7/J8.

1.5 Selection of tools

Some tools and editors are required to prepare assembly language program and its compiling i.e. hex

file generation, and writing this hex file to flash memory.

Free downloadable Keil µvision version 4, editor is used for writing assembly language program and

its compiling.

Free downloadable Flash Magic or USB programmer is used for flash programming.

Hyper terminal available with windows is used for debugging purpose.

1.6 Schematic Diagram

Discussion and explanation: Refer schematic diagram figure 1.6

1. Microcontroller 89V51RD2 is biased with +5V power supply connected at pin 40, GND

connected at pin 20. A 0.1MFD ceramic capacitor is connected between pin 40 and GND to

suppress supply spikes.

2. Enable Access (EA), pin 31 and PSEN pin 29 are all connected with Vcc. PSEN bar is

connected to high logic as only internal flash memory is in use.

3. Cathode of all 8 LEDs are connected at different pins of port0 i.e. from pin 32 to 39 of

controller, LED anode will be connected to Vcc through 1KOhm resistance network RN1.

These LEDs will be used in program to view outputs or to check proper functioning by

blinking them with different delays.

4. A 16 pin DIP switch (8 on/off switches) can be connected through 10KOhm resistance network

RN3 at any port for switch inputs. At on condition port will be at low level.

5. A 11.0592 MHz crystal oscillator is connected between pin 18 and 19 of controller, with two

22pf ceramic capacitors connected between pin 18, 19 and GND.

6. As controller requires logic high voltage for short duration to get itself reset, a reset circuit is

connected at RST pin i.e. pin 9 of controller. It consists of a push-to-on switch connected

between Vcc and pin 9, a 10K resistor connected between pin 9 and GND and an electrolytic

capacitor of 10MFD/25V, connected between Vcc and pin9 of controller.

7. For serial UART working, pin 10 of controller i.e. receive pin at port3 (P3.0) and pin 11 of

controller i.e. transmit pin at port3 (P3.1) are connected with serial UART IC, MAX232 pin 9

8

and 10 respectively. Pin 9 of MAX232 is R2OUT i.e. receive out pin, which outputs data

received from PC through serial cable via pin 8 i.e. R2IN of MAX232. Pin 10 of MAX232 is

T2IN i.e. transmit input, which inputs data from controller. This input data is then sent to PC

through serial cable via pin7 i.e. T2OUT of MAX232.

8. IC MAX232 is biased with +5V supply at pin 16, GND at pin 15. Rest of its biasing is done as

per recommended circuitry. Four number 10 MFD/63V electrolytic capacitors are connected as

recommended.

9. DB9 connector is connected between MAX232 and PC.

Refer table 1 for complete list of components.

Figure 1.2: Pin diagram of P89V51RD2/AT89S52

*Note: Some instructions or names of SFRs may be changed in different processors of different

manufacturers, e.g. ATMEL NXP for same architecture. Care must be taken here.

9

Figure 1.3: Bareboard PCB for Reprogrammable Embedded System

Figure 1.4: Components for Reprogrammable Embedded System

10

Figure 1.5: Assembled PCB for Reprogrammable Embedded System

11

Table 1.1

1.7 LIST OF COMPONENTS FOR THE

EMBEDDED DEVELOPMENT SYSTEM

Components Qty./board

ICs

 1 P89V51RD2/ AT89S52 1

2 MAX232 1

CAPACITORS

 1 10uF(electrolytic)/63V 5

2 22pF(ceramic) 2

 KEYS

 1 DIP SWITCH 1

2 ON/OFF(push to On push to OFF) 1

CRYSTAL

 1 11.0592 MHz 1

LEDS

 1 LED(3mm) 9

RESISTANCES

 1 10K RESISTANCE NETWORK(9 -pin) 2

2 1K RESISTANCE NETWORK(9 -pin) 1

3 470E 1

4 1K 1

CONNECTORS

 1 SERIAL PORT(DB-9) RIGHT ANGLED

FEMALE 1
2 SERIAL PORT(DB-9) MALE 1
3 SERIAL PORT (DB-9) FEMALE 1
4 CONNECTOR (8-PIN) MALE+ FEMALE 2
5 CONNECTOR (2-PIN) MALE+FEMALE 2
6 BERGSTICK MALE 1
7 CASING (DB-9 CONNECTOR) 2
8 FEMALE TO FEMALE SINGLE

CONNECTING WIRE 10

TRANSISTORS

 1 BC547 1

IC base

 1 40-pin 1

3 16-pin 2

PCB 1

12

Figure1.6: Schematic Diagram for reprogrammable Embedded Board

1.7 Programmer

The purpose of the programmer is to transfer HEX code from PC to appropriate pins and provide

regular voltage levels during chip programming as well. For this development system, the programmer

is freely available FlashMagic (for P89V51RD2) or 89SXX from Sunrom Technologies (for

AT89S52) connected to PC via Serial cable/ USB cable. When the process of programming is

completed, microcontroller pins used for it are automatically available for other application.

1.7.1 Source Code: Table 1.2

; Blinking of LED at port 2.7. Some delay is generated to see LED blinking(LA and LB loop)
ORG 0000

START: NOP

 MOV R0, #0FFH;

LB: MOV R1, #0FFH;

13

LA: NOP;

 DJNZ R1, LA;

 DJNZ R0, LB;

 CPL P2.7

 SJMP START

 END

1.8 Result: Embedded system board (as shown in figure 1.5) is soldered, checked and found

working.

1.9 Conclusion:- Target board of such types can be designed using very less amount of components

and can be used for many applications.

1.10 Remarks:- Other controllers of 8051 architecture and having same pinouts can also be tested

and used on same target board .

1.11 References:-

1. Datasheet Max232

2. Datasheet P89v51RD2/AT89S52

3. http://www.cadsoftusa.com/shop/eagle-hobbyist-and-education/

4. https://www.cadsoftusa.com/download-eagle/

5. http://www.cadsoft.de/wp-content/uploads/2011/05/V6_tutorial_en.pdf

6. http://www.mikrocontroller.net/attachment/17909/Protel_99_SE_Traning_Manual_PCB_Desi

gn.pdf

http://www.cadsoftusa.com/shop/eagle-hobbyist-and-education/
https://www.cadsoftusa.com/download-eagle/
http://www.cadsoft.de/wp-content/uploads/2011/05/V6_tutorial_en.pdf
http://www.mikrocontroller.net/attachment/17909/Protel_99_SE_Traning_Manual_PCB_Design.pdf
http://www.mikrocontroller.net/attachment/17909/Protel_99_SE_Traning_Manual_PCB_Design.pdf

14

Experiment 2

Tool Chain of Keil IDE (Embedded Development Tool Chain) with the example of

LED Blinking Program

2.1 Objective: To understand the procedure of creating source code for reprogrammable embedded

system board using IDE such as Keil µVision.

2.2 Software Requirement: Editor like Keil µVision Ver 4 or less.

2.3 Description:

Understanding any processor or controller needs familiarity with its architecture and instruction set.

Any architecture can be best understood using its instruction set through different programs.

One may use assembly language or embedded C for writing programs. Programs written in assembly

language are completely processor dependent and need major changes when converting to other

processor. While programs written in C are generally independent of processor and needs minor

changes during conversion to other processors.

C is thus preferred for programming. But to know and understand a processor better, one must be

familiar with assembly language.

All source code written in this document will be written using assembly language for 8051

architecture.

Some development environment is needed to prepare any application. An editor is needed first to

provide a platform for writing programs i.e. source code.

A source code written in assembly/C language is needed to be converted to machine language (hex

code) before programming into processor. This conversion is done by compiler which converts

assembly/C language code to hex code.

IDE i.e. Integrated development Environment, serves both these purposes as well as provide

debugging facility.

Assembly language file will be stored by extension .asm, C file by extension .c and hex file by

extension .hex.

2.4 Procedure:

Many free software are available for educational purpose e.g. Keil, SDCCDown load free tools for

IDE from

 www.keil.com/download/product,

http://www.keil.com/download/product

15

https://www.keil.com/demo/eval/c51.htm

IDE for 8051 architecture can be downloaded using these links. It’s an integrated development

environment for creation and compilation of assembly/C source code for any 8051 architecture based

target boards. It also provides debugging facility [1].

Steps:

2.4.1.1 Click on Keil µVision4 icon for getting started.

2.4.1.2 Click on Project tab>Make new project> Select target device.

2.4.1.3 Click on File>New file.

2.4.1.4 Prepare a test code in assembly language as shown in editor window. Save it with .asm

extension.

2.4.1.5 Add this created file to project. One may add one or more than one file in a single

project.

2.4.1.6 Click Target1 (at left side pane)>Source Group> Right click to add code file.

2.4.1.7 Open Project tab> Options for target target1> Output tab>check „create hex file‟

option.

2.4.1.8 Open Project tab> Build target. This will generate compiled .hex file from the .asm or

.C file, in the project created.

One may refer Help tab for further help for using this tool.

*Many video are there in you tube which may be referred to understand the procedure better.

https://www.keil.com/demo/eval/c51.htm

16

Figure 2.1 IDE- Keil µVision

2.5 Result: Sample program for LED blinking is written, compiled and hex file generated.

2.6 Conclusion:- Different programs can be written, debugged and simulated using IDE.

2.7 Remarks:- Different programs should be written and tested using assembly/C language for better

understanding of the tool .

2.8 References:-

[1] https://www.keil.com/demo/eval/c51.htm

To view register

s/SFRs/memory

status and content

https://www.keil.com/demo/eval/c51.htm

17

Experiment 3

Flash Programming Using Serial UART Flash Programmer- FlashMagic

3.1 Objective: To understand the procedure of flash programming source code for reprogrammable

embedded system board using NXP’s FlashMagic.

3.2.1 Software Requirement: FlashMagic.

3.2.2 Hardware Requirement: Target board with P89V51RD2 controller as per circuit given in

figure 1.6, Serial Cable with DB9 Connector, Power Cable.

NOTE: Choose target processor which supports In-system programming (ISP) e.g. Phillips

P89V51RD2.

3.3 Procedure:

1. Down load free tools for flash programmer from

www.flashmagictool.com

Save and run FlashMagic.exe

A serial port flash programmer will be downloaded then.

3.3.1 Requirements: Flash Magic works on Windows 2000, XP, Vista and 7. 10Mb of disk space is

required for reliable operation of the said tool.

Once install, Flash magic will look like figure 3.1.

Recommended settings for flash magic are as shown in figure 3.1.

Connect target board with serial port of PC using Serial cable (standard 9 pin cable is recommended).

Flash magic tool steps are described as under.

 Step1 :- Select target device, choose serial COM port, baud rate and Interface as None.

 Step2:- Choose desired option for flash erase.

 Step3:- Browse desired hex file that to be flash programmed into target controller.

 Step4:-Select desired options for programming. Verify after programming is recommended.

Beginners should not use other options as they may lock their target device.

 Step 5:- After all setting are done press Start programming button.

http://www.flashmagictool.com/

18

Figure 3.1 FlashMagic Programmer

If any error message, as shown in figure 3.2 appears then click

Options->Advance Options->Hardware Config and uncheck both the options as shown in figure 3.3

Figure 3.2 FlashMagic Programmer Communication Error Message

19

Figure 3.3 FlashMagic Programmer Communication Advance Options

Once communication between flash magic and target board established, after pressing start button,

flash programmer will show message as in figure 3.4

Figure 3.4 Reset Message

Reset processor at target board.

Flash programming will be started then.

20

After successful programming Finished message can be seen at bottom left corner of flash

programmer screen.

Target board is now ready to be used. It will run as per the hex file loaded.

3.4 Result: Sample program for LED blinking is programmed and LED blinking is observed as per

program at target board.

3.5 Conclusion:- Different hex files can be programmed and checked using flash programmer.

3.6 Remarks:- Different programs should be programmed and tested using assembly/C language for

better understanding the tool .

3.7 References:-

[1] www.flashmagictool.com

http://www.flashmagictool.com/

21

Experiment 4

Flash Programming Using SPI Flash Programmer- 89SXX

4.1 Objective: To understand the procedure of flash programming source code for reprogrammable

embedded system board using Sunrom technology’s 89SXX USB flash programmer, ISP Model: 1315.

4.2.1 Software Requirement: 89SXX programmer frontend.

4.2.2 Hardware Requirement: Target board with Atmel AT89S52 controller as per circuit given in

figure 1.12, Power Cable.

NOTE: Choose target processor which supports In-system programming (ISP) using SPI e.g.

Atmel AT89S52.

4.3 Procedure:

1. Down load free tools for flash programmer application from

http://www.sunrom.com/337

2. For 89SXX USB flash programmer, ISP Model : 1315 (figure 4.1)

3. Save and run 1100_setup.exe

4. A SPI flash programmer application will be downloaded then (figure 4.2).

5. 89SXX USB flash programmer (figure 4.1) will program target board (figure 4.5) using

1100_setup.exe (figure 4.2).

Figure 4.1 89SXX USB ISP Flash Programmer (SPI based)

Click icon (figure 4.2) to start programming application (figure 4.3).

http://www.sunrom.com/337

22

Figure 4.2 Application icon

Figure 4.3 Application 89SXX USB ISP Flash Programmer (SPI based)

 Connect USB programmer with computer and target board. Steps to be followed are as described

under.

Step1:- Select Device> 8051 MCU>Atmel>AT 89S52>OK

Step2:- Browse intended hex file.

STEP 1

STEP 2

STEP 4

STEP 5

STEP 3

23

Step3:- Selected file will appear here.

Step4:- Click Program to flash program the selected device.

Step5:- During programming, different programming status can be seen here.

Pin configuration for ISP connectors are as shown in figure 4.4.

Figure 4.4 Pin Configuration for USB 89SXX ISP Programmer [3]

24

Figure 4.5 Schematic diagram showing connection between microcontroller and programmer [3]

25

Figure 4.5 Schematic diagram of target board using ATMEL microcontroller

4.4 Source Code: Table 4

;Blinking of LED at port 2.7. Some delay is generated to see LED blinking(LA and LB loop)
ORG 0000

START: NOP

 MOV R0, #0FFH;

LB: MOV R1, #0FFH;

LA: NOP;

 DJNZ R1, LA;

 DJNZ R0, LB;

 CPL P2.7

 SJMP START

 END

4.5 Result: Target board is programmed and blinking of LED at port p2.7 i.e. pin no 28 of

microcontroller AT89S52 is obtained.

26

4.6 Conclusion: With very low component count and easily and freely available tools, designing and

programming of small and low cost systems can be achieved.

4.7 Remarks: Any IDE and any flash programmer can be used. Keil µVision, FlashMagic and

89SXX USB programmers are recommended and tested here, for their respective purposes. All these

tools are selected due to their easy accessibility, low cost and wide acceptance. Help on these tools are

easily available.

As newer PC/laptops are equipped with USB port, one can also think for USB base programmers. One

option is to choose Universal programmer, they are highly flexible in terms of device selection but are

higher in cost. For simple projects, one can easily rely on chip specific programmer which may not

provide flexibility in device selection, but are quite cheep.

*Note:- USB to RS232 converter will be needed to use Flash magic from PC’s USB port.

4.8 Reference:-

1. www.keil.com

2. www.flashmagictools.com

3. http://www.sunrom.com/337

http://www.keil.com/
http://www.flashmagictools.com/
http://www.sunrom.com/337

27

Experiment No. 5

Multiple Controllers Programming Using Flash Magic

5.1 Objective: To understand the procedure and connections for multiple controllers programming of

same type of controller with same source code in one go, using flash magic.

5.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

5.2.2 Hardware Requirement: 2 Sets of target boards with P89V51RD2 controller as per circuit

given in figure 1.6, Serial Cable with DB9 Connector.

5.3 Procedure:

1. Connect circuit as per given block diagram of figure 5.1. These connections will facilitate

programming of multiple controller of same type, simultaneously. Here it is checked for 2

controllers.

2. Use source code of experiment 1.

3. Set flash programmer for programming as per given figure 5.2.

4. Open Options-> advance option-> Misc->Check, disable device signature checking.

5. Start flash programming.

6. Reset both the target controllers simultaneously when prompted.
7. Click ok for warning message.

Figure 5.1 Block diagram for multi controller programming, connections

Tx
Pin 11

Tx,pin10

Tx

Rx

To PC

Rx
pin 10

Tx
Pin 11

Serial
Connector

DB9

Processor 1
(P89V51RD2)

Processor 2
(P89V51RD2)

MAX232
Interface

Rx, pin 9 Rx
pin 10

28

Figure 5.2 Flash programmer settings for multi controller programming

5.4 Result: Both the controllers are programmed simultaneously with same program.

5.5 Conclusion:- Multiple controllers can be programmed in one go with same source code and

hence beneficial in time saving for large production. Target board there can be designed with some

jumper settings to facilitate multiple programming connections.

5.6 Remarks:- Single max232 interface is used here to program multiple controllers and hence care

must be taken as this may increase voltage levels of max232 which may result in its damage.

5.7 References:-

1. Datasheet Max232

2. Datasheet P89v51RD2

29

3.

Experiment 6

Interfacing LEDs at Input/ Output Port

6.1 Objective: To interface 8 LEDs at Input-output port and create different patterns.

6.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

6.2.2 Hardware Requirement: Target boards with P89V51RD2/AT89S52 controller as per circuit

given in figure 1.6/4.5, Serial Cable with DB9 Connector/USB 89SXX Programmer with cable.

6.3 Procedure:

1. Connect 8 LEDs at port 2 (pin 21 to 28) as per given block diagram of figure6.1. Rest of the

circuit will remain same as figure 1.6/4.5

2. Write program for LED blinking at port.

3. Build/Compile project.

4. Flash program and observe results.

 Figure 6.1 LED connections at port2

Microcontroller

P89V51RD2

or AT89S52

30

6.4 .1 Source Code : Table 6A

;Program written using assembly language of

8051 architecture for P89V51RD2

;This program will lit one LED at a time

;starting from port 2.0 to port 2.7 and create

;LED rotation pattern. All other LEDs will

;remain off.

 ORG 0100

MAIN: MOV P2,#0FEH

 LCALL DELAY

 MOV P2,#0FDH

 LCALL DELAY

 MOV P2,#0FBH

 LCALL DELAY

 MOV P2,#0F7H

 LCALL DELAY

 MOV P2,#0EFH

 LCALL DELAY

 MOV P2,#0DFH

 LCALL DELAY

 MOV P2,#0BFH

 LCALL DELAY

 MOV P2,#7FH

 LCALL DELAY

 LJMP MAIN

; Subroutine for some delay generation, to

view ;LED blinking

DELAY: MOV R0,#0FFH

LOOP1: MOV R1,#05H

LOOP2: MOV A,#05H

LOOP3: DEC A

 JNZ LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

 END

*Bold lines shows change in instructions

6.4.2 Source code : Table6B
Same function can be achieved using source code 3B with less number of instructions

;Rotate accumulator left command is use to

;create same rotating effect.

ORG 0100

MAIN: MOV A,#0FEH

MAIN1: MOV P2,A

 LCALL DELAY

 LCALL DELAY

 RL A

 LJMP MAIN1

; subroutine for some delay generation

 DELAY: MOV R0,#0FFH

 LOOP1: MOV R1,#05H

 LOOP2: MOV R2,#05H

 LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

 END

6.5 Result: Output at LEDs observed as per programs, i.e. LED rotating in circular manner is

achieved at port2.

6.6 Conclusion:- with smart use of instructions memory area of controller can be saved as can be

seen from above example.

6.7 Remarks:- Different LED patterns can be generated and tested e.g. blinking of all LEDs,

Blinking of alternate LEDs, 8 bit/4bit binary pattern generation, BCD number pattern generation,

dancing LED etc.

6.8 Reference :- Datasheet 89V51RD2/ AT89S52

31

Experiment 7

Use of I/O pins for data transfer between controllers

7.1 Objective: To use general purpose port i.e. Input/ output port of two controllers for data transfer

between them.

7.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

7.2.2 Hardware Requirement: 2 sets of target boards with P89V51RD2/AT89S52 controller as per

circuit given in figure 1.6/4.5, Serial Cable with DB9 Connector/ USB 89SXX Programmer with

cable, some connectors.

7.3 Procedure:

1. Connect target boards as per given block diagram of figure 7.1.

2. Write programs, for both the controllers.

3. Build/Compile project.

4. Flash program both the controllers with respective source codes and observe results.

Figure 7.1 Two microcontrollers connected through port3

8
LE

D
s

at
 p

o
rt

 2
 f

o
r

ch
ec

ki
n

g

Controller1
Port 3 as

output port

Port 3 Port 2

 8
LED

s at p
o

rt 2
 fo

r resu
lt

Controller2
Port 3 as

input port

GND

Port 2

Vcc

+5V

32

7.4.1 Source code: Table 7A

;Program for microcontroller1, i.e. for Sender

;controller

ORG 0000H

START: MOV A,#0FEH

LOOP: RR A

MOV P3,A

MOV P2,A

LCALL DELAY

SJMP LOOP

;Subroutine for delay

DELAY: MOV R0,#02

LOOP1: MOV R1,#255

LOOP2: MOV R2, #255

LOOP3: DJNZ R2, LOOP3

 DJNZ R1, LOOP2

 DJNZ R0, LOOP1

 RET

END

7.4.2 Source code: Table 7B

;Program for microcontroller2, ie for receiver controller. These controllers are connected

;through port3. No delay program is written here as delay will be taken care by controller1

;routine.

ORG 0000H

START: NOP

LOOP1: MOV A,P3

MOV P2,A

SJMP LOOP1

END

7.5 Result: Output observed at LEDs, of both the target boards as per programs, i.e. LED lighting in

circular manner is achieved at port2 of controller2 same as of controller1 at port2.

7.6 Conclusion:- General purpose Input/Output pins can also be used to transfer data between ports.

However this process will be slow but benefit lies in its easiness.

7.7 Remark:- Both controllers can send and receive data from other controller at different as well as

at same port but not at the same time. Different programs can be tested for such functionalities.

7.8 Reference :-

1. Datasheet 89V51RD2/AT89S52

33

Experiment 8

Memory Block Programming Using Flash Magic

8.1 Objective: To achieve block wise programming of memory for controller using flash magic.

8.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

8.2.2 Hardware Requirement: Target board with P89V51RD2 controller as per circuit given in

figure 1.6, Serial Cable with DB9 Connector.

8.3 Procedure:

1. Write source codes (e.g. LED blinking at port) , for different blocks of memory.

2. Add all source codes into one µvision project (as described in figure 8.2).

3. Build/Compile project. Compiled file i.e. hex file will contains all source codes into one file.

4. Before programming the controllers, un-check all memory erase options (as described in figure

8.1) in flash programmer.

5. Flash program the controller and observe results.

8.4 Source Code: Table 8

;First block of program starts from location ;50h,

on/off LED at port2.0 for some time

; jump to second block of memory

ORG 0050H

 LJMP START1

START1: MOV R3,#20

LED1: CPL P2.0

 LCALL DELAY

 DJNZ R3,LED1

 LJMP 0100H

DELAY: MOV R0,#02

LOOP1: MOV R1,#255

LOOP2: MOV R2,#255

LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

 END

;Second block of program starts from location

;100h, on/off LED at port2.1 for some time

; jump to third block of memory

ORG 0100H

;Third block of program starts from location

;200h, on/off LED at port2.2 for some time

; jump to fourth block of memory

ORG 0200H

 LJMP START1

START1: MOV R3,#20

LED3: CPL P2.2

 LCALL DELAY

 DJNZ R3,LED3

 LJMP 0300H

DELAY: MOV R0,#02

LOOP1: MOV R1,#255

LOOP2: MOV R2,#255

LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

 END

;Fourth block of program starts from location

;300h, on/off LED at port2.3 for some time

; jump to first block of memory

ORG 0300H

34

 LJMP START1

START1: MOV R3,#20

LED2: CPL P2.1

 LCALL DELAY

 DJNZ R3,LED2

 LJMP 0200H

DELAY: MOV R0,#02

LOOP1: MOV R1,#255

LOOP2: MOV R2,#255

LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

 END

 LJMP START1

START1: MOV R3,#20

LED4: CPL P2.3

 LCALL DELAY

 DJNZ R3,LED4

 LJMP 0050H

DELAY: MOV R0,#02

LOOP1: MOV R1,#255

LOOP2: MOV R2,#255

LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

 END

Figure 8.1 Memory block programming selection in flash magic

35

Figure 8.2 Memory block programming of controller

8.5 Result: Output at LEDs observed as per programs, LED blinking at port2 of controller, at

different port locations as per program. Different source codes are combined into one project as seen

in figure 5.2.

Hex file of this project is as displayed under

:100050000200537B14B2A012005FDBF902010078AA

:0C0060000279FF7AFFDAFED9FAD8F62206

:100200000202037B14B2A212020FDBF90203007890

:0C0210000279FF7AFFDAFED9FAD8F62254

:100300000203037B14B2A312030FDBF9020050783F

:0C0310000279FF7AFFDAFED9FAD8F62253

:100100000201037B14B2A112010FDBF90202007895

:0C0110000279FF7AFFDAFED9FAD8F62255

:00000001FF

Multiple

source codes

in one project

36

 Yellow highlight shows start of different memory block of different source codes and green highlight

shows same delay routine used in all source codes.

8.6 Conclusion:- Without erasing entire source code a part of it can be altered using memory block

programming as discussed. And hence results in saving time of programming for large programs.

8.7 Remarks: Same labels can be used in different source codes though they belong to same project.

Common routines e.g. .delay routines for different source codes in same project can also be placed at

one location and used by all programs and thus results in memory space saving.

8.8 Reference :-

1. Datasheet 89V51RD2

37

Experiment 9

Memory Block Erasing Using Flash Magic

9.1 Objective: To achieve block wise erasing of memory for controller using flash magic.

9.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

9.2.2 Hardware Requirement: Target board with P89V51RD2 controller as per circuit given in

figure 1.6, Serial Cable with DB9 Connector.

9.3 Procedure:

1. Write source code for LED blinking at port, for different blocks of memory. Use source

code of experiment 5.

2. Build/Compile project.

3. At flash programmer, un-check all memory erase options. See figure 9.1.

4. At flash programmer open ISP, select Erase Flash pages. See figure 9.2.

5. Select desired page to be erased (here it is page 4), and then press erase. See figure9.2

6. Program controller with desired code and observe results.

9.4 Source Code: Table 9

; Block of program starting from location 200h

; On/off LED at port2.6 for some time

; Jump to different block of memory

ORG 0200H

 LJMP START1

START1: MOV R3,#20

LED3: CPL P2.6

 LCALL DELAY

 DJNZ R3,LED3

 LJMP 0300H

DELAY: MOV R0, #02

LOOP1: MOV R1, #255

LOOP2: MOV R2, #255

LOOP3: DJNZ R2, LOOP3

 DJNZ R1, LOOP2

 DJNZ R0, LOOP1

 RET

 END

38

Figure 9.1 Settings for memory block programming

Uncheck

all erase

options

39

Figure 9.2 Erase desired page of flash memory

9.5 Result: In source code of experiment 8, only third block is erased using flash page erase and then

flash is programmed with new program for LED output at port2.6.

Results observed as per programs, i.e. LED blinking at port2 of controller, at different port locations as

per program. LED blinking first at port2.0, then port2.1, and then at port 2.6 instead of port2.2 as per

experiment 5 and then at port 2.3.

9.6 Conclusion:- Same as block writing of memory, block erase of memory can also be done for

different blocks.

9.7 Remark:- Each memory location cannot be erased or programmed. This can be done only in

block defined. Means modifications will be done on entire block of memory and not on single

location.

9.8 Reference :- Datasheet 89V51RD2

40

Experiment 10

Timer in Timer Mode

10.1 Objective: To achieve timer working in timer mode and blink LED without using any loop delay

routine.

10.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

10.2.2 Hardware Requirement: Target board with P89V51RD2/AT89S52 controller as per circuit

given in figure 1.6/4.5, Serial Cable with DB9 Connector/ USB 89SXX programmer with cable.

10.3 Procedure:

1. Write source code e.g. LED blinking at port.

2. Build/Compile project.

3. Program controller with desired code and observe results.

10.4 Source Code: Table 10

;Timer0 is used in timer mode. Runs from

;0000 to ffffh and blink LED at port 2.2, Timer

;0 ISR,Timer0 in mode 1

 ORG 0000H

 LJMP START

ORG 000BH

START: MOV TMOD,#01H

MOV TL0,#00H

MOV TH0,#00H

SETB EA

SETB ET0

SETB TR0

 LJMP $

; Timer0 ISR routine

TMR0_INT: CLR TR0

 CLR TF0

 CPL P2.2

 MOV TL0,#00H

 MOV TH0,#00H

 SETB TR0

 RETI

 END

10.5 Result: Results observed as per programs, i.e. one LED blinking at port2.2 of controller, as per

program.

10.6 Conclusion:- As timer is used to generate delay, controller is free to complete other tasks while

generating delay.

10.7 Remarks:- Using timers different functions can be achieved. E.g. generation of fixed time delay,

generation of frequency at, any I/O port etc.

Counter function of timers allow measurement of unknown frequency, event counting etc.

10.8 Reference :- Datasheet 89V51RD2/AT89S52

41

Experiment 11

Seven segment LED display interfacing

11.1 Objective: To achieve interfacing of seven segment LED display and generate counting from 0

to 99 with fixed time delay.

11.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

11.2.2 Hardware Requirement: Target board with P89V51RD2/AT89S52 controller as per circuit

given in figure 1.6/4.5, Display circuit as per figure 11.1, Serial Cable with DB9 Connector/ USB

89SXX programmer with cable.

11.3 Procedure:

1. Connect circuit as per figure 11.1. Connect J1 and J2 between points 2 and 3.Connect

point3 of J1 to port1.6 and point3 of J2 to port1.7 of target board controller (figure1.6/4.5).

2. Short CON5 and CON6 and connect them to CON2 of target board controller

(figure1.6/4.5).

3. Write desired source code.

4. Build/Compile project and program controller with desired code and observe results.

Figure 11.1 Seven Segment LED display connections with controller

42

11.4 Source Code: Table 11

;Only for two seven segment connected at

;port2, ;control pins for common cathode type

;Seven segment is connected at port 1.6 and

;1.7

 ORG 0000H

 LJMP START1

START1: SETB P1.7

 SETB P1.6

 MOV R5,#00H

 MOV R4,#00H

 MOV R6,#0FFH

NEXTSEG: MOV R3,#0AH

 MOV DPTR,#1000H

NEXTDIG: MOV A,R4

 MOVC A,@A+DPTR

 MOV P2,A

 LCALL DELAY

 CLR P1.7

 SETB P1.6

 MOV A,R5

 MOVC A,@A+DPTR

 MOV P2,A

 LCALL DELAY

 CLR P1.6

 SETB P1.7

 DJNZ R6,NEXTDIG

 MOV R6,#0FFH

 INC R4

 DJNZ R3,NEXTDIG

 INC R5

 MOV A,R5

 MOV R4,#00H

 SETB P1.6

 CJNE R5,#0AH,NEXTSEG

 SJMP START1

;DELAY ROUTINE

DELAY: MOV R0,#02

LOOP1: MOV R1,#10

LOOP2: MOV R2,#100

LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

ORG 1000H

DB 03FH, 06H, 05BH, 04FH, 66H,

 06DH, 07DH, 07H, 07FH, 067H

 END

11.5 Result: Two common cathode seven segments LED displays are showing counting starting

from 0 to 99 with fixed time delay.

11.6 Conclusion:- Interfacing of seven segment LED displays is achieved.

11.7 Remark:- More than two seven segment LED displays can be connected at same port with

different control pins. Alpha-numeric displays can also be connected in similar manner.

11.8 Reference :-

1. Datasheet 89V51RD2/AT89S52

2. http://en.wikipedia.org/wiki/Seven-segment_display

43

Experiment 12

RS232 Serial Communication between PC and controller

12.1 Objective: To achieve serial communication between PC and controller using serial UART of

controller.

 12.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer, Hyper

terminal at PC (download from http://www.hilgraeve.com/hyperterminal-trial/).

12.2.2 Hardware Requirement: Target board with P89V51RD2/AT89S52 controller as per circuit

given in figure 1.6/4.5, Serial Cable with DB9 Connector/ USB 89SXX programmer with cable.

12.3 Procedure:

1. Write desired source code.

2. Build/Compile project.

3. Program controllers with desired code.

4. Close Flash programmer.

5. Connect target board with PC through DB9 serial connector, open hyper terminal for

desired communication.

6. Set hyper terminal as shown in figures 12.1 to 12.4. Select Com port, baud rate as 9600,

data bits as 8, parity as none, stop bit as 1 and flow control as none.

7. Observe results.

12.4 Source Code: Table 12

; This code enables controller to communicate

;with PC at 9600 baud-rate. Data sent from PC

;will be echoed ;back to PC. Timer1 of

;controller is used for generating baud rate.

;Serial interrupt routine resides at 0023h. LED

;at port 2.0 is used for indication. Stack

;pointer set at 08h. Timer1 is used in mode 2

;i.e. auto reload mode.

 ORG 0000H

 JMP 0100H

 ORG 0023H

 CALL SR_INT

 RETI

 ORG 0100H

START: SETB P2.0

 MOV SP,#08H

 MOV SCON, #50H

 ANL PCON,#7FH

 SETB TR1

AGAIN: JMP AGAIN

;Serial interrupt routine for checking transit or

;receive. Only if RI flag is set, receive will

;occur else transmit. Receive indication is

;given by LED at port 2.0. Read data from

;SBUF, this is data received from PC, clear RI

;flag and load SBUF with same data to sent

;back to PC

SR_INT: JNB RI,CHKTX

 CLR P2.0

 MOV A,SBUF

 CLR RI

 MOV SBUF,A

44

 CLR TR1

 MOV TMOD, #20H

; Enable interrupt servicing and serial port

;interrupt, Load fdh in timer1 for 9600 baud

;rate. Set 8 bit UART mode and enable

;reception. After then start timer1.

 MOV IE,#90H

 MOV TH1,#0FDH

 MOV TL1,#0FDH

 RET

;After transmit complete give indication at

;LED connected at port 2.0 and clear transmit

;flag TI

CHKTX: SETB P2.0

 CLR TI

 RET

 END

Hyper Terminal settings will be as described under.

Figure 12.1 Open hyper terminal for checking serial communication between PC and Target

board

Open hyper

terminal

Click

start

45

Figure 12.2 Name hyper terminal for connections in serial communication

Figure 12.3 Select communication port for checking serial communication

Select

communication

port

Type any

name

46

Figure 12.4 Select options for checking serial communication

12.5 Result: Target processor is receiving from PC, and then sent back received data to PC. Results

are observed as per figure 12.5.

Figure 12.5 Output received while checking serial communication

12.6 Conclusion:- Controller is communicating with PC using serial UART.

12.7 Remark:- Communication between two controllers can also be achieved using serial UART.

47

12.8 Reference :-

Datasheet 89V51RD2/AT89S52

http://en.wikipedia.org/wiki/RS-232

http://www.aggsoft.com/rs232-pinout-cable/serial-port-db9.htm

http://www.hilgraeve.com/hyperterminal/

http://en.wikipedia.org/wiki/RS-232
http://www.aggsoft.com/rs232-pinout-cable/serial-port-db9.htm
http://www.hilgraeve.com/hyperterminal/

48

Experiment 13

SPI-Serial Peripheral Interface-Master mode

13.1 Objective: To achieve communication between two controllers using SPI in master mode. Only

master will send and Slave will receive.

13.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

13.2.2 Hardware Requirement: Target board with P89V51RD2/AT89S52 controller as per circuit

given in figure 1.6/4.5, Display circuit as per figure 11.1, Serial Cable with DB9 Connector/USB

89SXX programmer with cable.

13.3 Procedure:

1. Connect circuit as per figure13.1.

2. In circuit of figure 11.1, connect J1 between 1 and 2, connect CON5 (of figure 11.1 circuit)

to CON2 of target board circuit as per figure 1.6/4.5.

3. Write desired source code.

4. Build/Compile project.

5. Program controllers with desired code and observe results.

Figure 13.1 SPI connections between two controllers as Master-Slave

13.4.1 Source Code: Table 13A For Master processor

;Processor as master and used only for sending

;data to slave, Fclk Peripheral/128 as baud rate

;and with slave select pin, P1.6(MISO) serial

;input, P1.5(MOSI) serial output, P1.4

;(SS_bar) Slave select, P1.7 (SCK) Serial

;Clock

;Define some RAM locations

TRANSMIT_OK BIT 20H.1

LOOP: MOV A,#00H

 MOV SPDAT,DATA_EX

 JNB TRANSMIT_OK,$

 CLR TRANSMIT_OK

 LCALL DELAY

 INC R5

 CJNE R5,#05H,LP2

 MOV R5,#00H

 MOV DPTR,#1500H

 SPI Master

SCLK P1.7

MOSI P1.5

MISO P1.6

SS P1.4

SPI Slave

Controller

SPI Master

Controller

49

SERIAL_DATA DATA 08H

DATA_SAVE DATA 09H

DATA_EX DATA 0AH

; Define SPI Control Register,

;Configuration/status register;

;Data register and Interrupt registers

SFR SPCR = 0XD5;

SFR SPSR = 0XAA;

SFR SPDAT = 0X86;

SFR IEN0 = 0XA8;

SFR IEN1 = 0XE8;

 ORG 0000H

 LJMP BEGIN

 ORG 004BH

 LJMP IT_SPI

 ORG 0100H

BEGIN: CLR P2.7

 MOV R5,#00H

 MOV A,#00H

 MOV DPTR,#1500H

 MOVC A,@A+DPTR

 MOV DATA_EX,A

 ORL SPCR,#10h

 SETB P1.4

 ORL SPCR,#83h

 ANL SPCR,#0FFh

 ORL SPCR,#04h

 SETB EA

 SETB ES

 ORL SPCR,#40h

 CLR TRANSMIT_OK

 MOVC A,@A+DPTR

 MOV DATA_EX,A

LP2: MOV A,R5

 MOVC A,@A+DPTR

 MOV DATA_EX,A

 LJMP LOOP

; Interrupt routine, interrupt at address 0x004B

IT_SPI: CPL P2.7

 MOV R7,SPSR

 MOV ACC,R7

 JNB ACC.7,BREAK1

 SETB TRANSMIT_OK

 MOV SPSR, #00H

BREAK1: JNB ACC.6, BREAK2

BREAK2: RETI

;Delay routine

DELAY: MOV R0,#20

LOOP1: MOV R1,#255

LOOP2: MOV R2,#255

LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

ORG 1500H

DB 6DH, 38H, 77H, 3EH, 79H

 END

13.4.2 Source Code: Table 13B For Slave processor

;Processor as slave and used only for receiving

;data from master, Fclk Peripheral/128 as baud

;rate and with slave select pin, P1.6(MISO)

;serial input, P1.5(MOSI) serial output, P1.4

;(SS_bar) Slave select, P1.7 (SCK) Serial

;Clock

;Define some RAM locations

TRANSMIT_OK BIT 20H.1

SERIAL_DATA DATA 08H

 ORG 0100H

BEGIN: MOV DATA_EX,#55h

 CLR P1.4

 ORL SPCR,#83h

 ANL SPCR,#0FFh

 ORL SPCR,#04h

 SETB EA

 SETB ES

 ORL SPCR,#40h

 CLR TRANSMIT_OK

50

DATA_SAVE DATA 09H

DATA_EX DATA 0AH

; Define SPI Control Register,

;Configuration/status register;

;Data register and Interrupt registers

SFR SPCR = 0XD5;

SFR SPSR = 0XAA;

SFR SPDAT = 0X86;

SFR IEN0 = 0XA8;

SFR IEN1 = 0XE8;

 ORG 000H

 LJMP BEGIN

 ORG 4BH

 LJMP IT_SPI

LOOP: JNB TRANSMIT_OK,$

 CLR TRANSMIT_OK

 LJMP LOOP

; Interrupt routine, interrupt at address 0x004B

IT_SPI: MOV R7,SPSR

 MOV ACC,R7

 JNB ACC.7,BREAK1

MOV P2,SPDAT

 SETB TRANSMIT_OK

 MOV SPSR, #00H

BREAK1: JNB ACC.6, BREAK2

BREAK2: RETI

 END

13.5 Result: Slave processor is showing data as received from master processor. Seven segment LED

display connected at Port 2 of slave controller shows alphabets SLAUE one by one repeatedly. While

one LED connected at Port2.7 of master process toggles every time it transmits.

13.6 Conclusion:- SPI interfacing is achieved where master controls the slave.

13.7 Remark:- A master can control a number of slaves using slave select. Same source code of

master and slaves can be used for communication between one master and four slaves with changes

only in slave select.

13.8 References:-

1. 89V51Rd2 datasheet/AT89S52

2. http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

3. http://www.ecse.rpi.edu/courses/CStudio/Silabs/Appnotes/AN028.pdf

NOTE:- Program written here are as per P89V51RD2. Please refer Atmel datasheet for any

changes in SFRs used for SPI.

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.ecse.rpi.edu/courses/CStudio/Silabs/Appnotes/AN028.pdf

51

Experiment 14

SPI-Serial Peripheral Interface-Master/Slave mode

14.1 Objective: To achieve communication between two controllers using SPI in master and slave

mode. Master will send, Slave will receive and vice versa.

14.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer.

14.2.2 Hardware Requirement: Target board with P89V51RD2/AT89S52 controller as per circuit

given in figure 1.6/4.5, Display circuit as per figure 11.1, Serial Cable with DB9 Connector/USB

89SXX Programmer with cable.

14.3 Procedure:

1. Connect circuit as per figure13.1.

2. In circuit of figure 11.1, connect J1 between 1 and 2, connect CON5 (of figure 11.1 circuit)

to CON2 of target board circuit as per figure 1.6/4.5

3. Write desired source code.

4. Build/Compile project.

5. Program controllers with desired codes and observe results.

14.4.1 Source Code: Table 14A For Master processor

;Processor as master and used for sending and

;receiving data to and from slave, Fclk

;Peripheral/128 as baud rate and with pin,

;P1.6(MISO) serial input, P1.5(MOSI) serial

;output, P1.4 (SS_bar) Slave select, P1.7

;(SCK) Serial Clock

;Define some RAM locations

TRANSMIT_OK BIT 20H.1

SERIAL_DATA DATA 08H

DATA_SAVE DATA 09H

DATA_EX DATA 0AH

; Define SPI Control Register,

;Configuration/status register

;Data register and Interrupt registers

SFR SPCR = 0XD5;

SFR SPSR = 0XAA;

SFR SPDAT = 0X86;

SFR IEN0 = 0XA8;

SFR IEN1 = 0XE8;

 ORG 000H

LOOP: MOV A,#00H

 MOV SPDAT,DATA_EX

 JNB TRANSMIT_OK,$

 CLR TRANSMIT_OK

 LCALL DELAY

 INC R5

 CJNE R5,#05H,LP2

 MOV R5,#00H

 MOV DPTR,#1500H

 MOVC A,@A+DPTR

 MOV DATA_EX,A

LP2: MOV A,R5

 MOVC A,@A+DPTR

 MOV DATA_EX,A

 LJMP LOOP

; Interrupt routine, interrupt at address 0x004B

IT_SPI: CPL P1.4

 MOV R7,SPSR

 MOV ACC,R7

 JNB ACC.7,BREAK1

52

 LJMP BEGIN

 ORG 4BH

 LJMP IT_SPI

 ORG 0100H

BEGIN: CLR P2.7

 MOV R5,#00H

 MOV A,#00H

 MOV DPTR,#1500H

 MOVC A,@A+DPTR

 MOV DATA_EX,A

 MOV SPCR,#0D7h

 SETB P1.4

 SETB EA

 SETB ES

 CLR TRANSMIT_OK

 MOV P2,SPDAT

 SETB TRANSMIT_OK

 MOV SPSR, #00H

BREAK1: JNB ACC.6, BREAK2

BREAK2: RETI

;Delay routine

DELAY: MOV R0,#20

LOOP1: MOV R1,#255

LOOP2: MOV R2,#255

LOOP3: DJNZ R2,LOOP3

 DJNZ R1,LOOP2

 DJNZ R0,LOOP1

 RET

ORG 1500H

DB 6DH, 38H, 77H, 3EH, 79H

 END

14.4.2 Source Code: Table 14B For Slave processor

;Processor as slave and used for sending and

;receiving data to and from master, Fclk

;Peripheral/128 as baud rate and with pin,

;P1.6(MISO) serial input, P1.5(MOSI) serial

;output, P1.4 (SS_bar) Slave select, P1.7

;(SCK) Serial Clock

;Define some RAM locations

TRANSMIT_OK BIT 20H.1

SERIAL_DATA DATA 08H

DATA_SAVE DATA 09H

DATA_EX DATA 0AH

; Define SPI Control Register,

;Configuration/status register;

;Data register and Interrupt registers

SFR SPCR = 0XD5;

SFR SPSR = 0XAA;

SFR SPDAT = 0X86;

SFR IEN0 = 0XA8;

SFR IEN1 = 0XE8;

 ORG 000H

 LJMP BEGIN

 ORG 4BH

 LJMP IT_SPI

 ORG 0100H

BEGIN: MOV DATA_EX,#0Fh

 MOV SPCR,#0C7h

CLR P1.4

 SETB EA

 SETB ES

 CLR TRANSMIT_OK

LOOP: MOV SPDAT, DATA_EX

JNB TRANSMIT_OK,$

 CLR TRANSMIT_OK

 MOV A,DATA_EX

 CPL A

 MOV DATA_EX,A

 LJMP LOOP

; Interrupt routine, interrupt at address 0x004B

IT_SPI: CPL P1.4

MOV R7,SPSR

MOV ACC,R7

 JNB ACC.7,BREAK1

MOV P2,SPDAT

 SETB TRANSMIT_OK

 MOV SPSR, #00H

BREAK1: JNB ACC.6, BREAK2

BREAK2: RETI

 END

53

14.5 Result: Slave processor is showing data as received from master processor. Seven segment LED

display connected at Port 2 of slave controller show alphabets SLAUE one by one repeatedly. While

eight LEDs connected at Port2 of master process shows 4 LEDs on/off every time it receives data from

slave after it transmits.

14.6 Conclusion:- Bidirectional communication between master and slave controllers using SPI

interface is achieved. It shows that either of the two controller can work as master/slave.

14.7 Remark:- Data communicated between two controllers can be stored in internal /external

memory block. Any of the participating controller can control other controller’s operations.

14.8 References:-

1. 89V51Rd2 datasheet/ AT89S52

2. http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

3. http://www.ecse.rpi.edu/courses/CStudio/Silabs/Appnotes/AN028.pdf

NOTE:- Program written here are as per P89V51RD2. Please refer Atmel datasheet for any

changes in SFRs used for SPI.

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://www.ecse.rpi.edu/courses/CStudio/Silabs/Appnotes/AN028.pdf

54

Experiment 15

Interfacing of 16x2 LCD with microcontroller

15.1 Objective: To achieve interfacing of 16x2 LCD and print some welcome message on it.

15.2.1 Software Requirement: Editor like Keil µvision ver 4 or less, Flash programmer

15.2.2 Hardware Requirement: Target board with P89V51RD2/AT89S52 controller as per circuit

given in figure 1.6/4.5, Serial Cable with DB9 Connector/USB 89SXX programmer with cable, 16x2

LCD , 10K POT, connecting wires.

15.3 Procedure:

1. Connect LCD with target board (figure 1.6/4.5) as per figure 15.1.

2. Write desired source code as per table 15. Refer figure 15.2.

3. Build/Compile project.

4. Program controllers with desired code.

5. Close Flash programmer

6. Observe results.

Figure 15.1 16x2 LCD module connections with microcontroller

89V51RD2

55

Figure 15.2 LCD module commands and instruction set

56

15.4 Source Code: Table 15

; This code enables controller to send data on

;LCD. Port 0 is used for data bus, P1.0 for

;enable, P1.1. for RW and P1.2 for RS.

 ORG 0000H

 LJMP START

;subroutine to display welcome, use ASCII

;values corresponding to alphabets

START: LCALL LCDINT

WELCOME: MOV A,#20H

 LCALL DISDT1

 MOV A,#57H

 LCALL DISDT1

 MOV A,#45H

 LCALL DISDT1

 MOV A,#4CH

 LCALL DISDT1

 MOV A,#43H

 LCALL DISDT1

 MOV A,#4FH

 LCALL DISDT1

 MOV A,#4DH

 LCALL DISDT1

 MOV A,#45H

 LCALL DISDT1

 JMP $

//subroutine for display data on LCD

DISDT1: SETB P1.2

 SETB P1.0

 NOP

 NOP

 MOV P0,A

 LCALL DELAY

 CLR P1.0

 CLR P1.2

 LCALL DELAY1

 RET

;one time usable routine for LCD initialization

LCDINT: MOV P1, #00H

 SETB P1.0

;SET ENTRY MODE

 SETB P1.0

 NOP

 NOP

 MOV P0,#06H

 NOP

 CLR P1.0

 LCALL DELAY

;SET DISPLAY ON

 SETB P1.0

 NOP

 NOP

 MOV P0,#0CH

 NOP

 CLR P1.0

 LCALL DELAY

;SET CURSOR AND DISPLAY SHIFT

 SETB P1.0

 NOP

 NOP

 MOV P0,#01CH

 NOP

 CLR P1.0

 LCALL DELAY

;SET FUNCTION SET

 SETB P1.0

 NOP

 NOP

 MOV P0,#038H

 NOP

 CLR P1.0

 LCALL DELAY

 RET

//Subroutine for delay used in LCD delay

DELAY: MOV R0,# 09

LOOP1: DJNZ R0,LOOP1

 RET

//Subroutine for delay used in display

DELAY1: MOV R0,#01

LOOP11: MOV R1,#0100

LOOP12: MOV R2,#0255

57

 NOP

 NOP

 MOV P0,#01H

 NOP

 CLR P1.0

 LCALL DELAY

LOOP33: DJNZ R2,LOOP33

 DJNZ R1,LOOP12

 DJNZ R0,LOOP11

 RET

 END

15.5 Result: 16x2 LCD interfaced with controller is showing message as ‘WELCOME’ on its first

line as per the source code.

15.6 Conclusion:- LCD is interfaced with controller and is showing messages.

15.7 Remark:- With the same procedure 16x4, 20x2, 20x4, 40x4 etc LCD can also be interfaced. Here

care must be taken in selecting LCD display segment address. Through proper segment address one

can display data anywhere on LCD display panel.

Bidirectional communication between LCD and controller can also be done, where one can use LCD

memory space, can create own characters using CGRAM data space of LCD eg hindi character set.

15.8 References:-

1. Datasheet 89v51RD2/AT89S52

2. https://www.sparkfun.com/datasheets/LCD/ADM1602K-NSW-FBS-3.3v.pdf

58

Design & Development of a mobile design using

Raspberry Pi : A Practical Approach

 (Experimental Manual for M.Tech Students)

for SoC and mobile design(Version 1, 2013-14)

with support of MHRD and NOKIA projects

Designed & Developed By: Ms. Nidhi Agarwal

Under the Guidance of: Dr. SRN Reddy, Associate Professor, CSE

Computer Science & Engineering Department

Indira Gandhi Delhi Technical University for Women

Kashmere Gate, Delhi-110006

Appendix A-List of Experiments

2
nd

 Semester M.TECH (MPC)
L P C

59

 0 2 1

Paper Code: MMC-520

Paper Title: Embedded System Design Based on ARM/Atmel Lab

1. Introduction to programming tool chain for Embedded Application Development Environment

(IDE) i.e. KEIL μversion4 and Flash Magic.

2. Design and develop a re-programmable embedded computer using 8051 architecture. Give its

schematic diagram and explain the function of each block.

3. Explain the procedure for Multiple Processor programming with Flash Magic & draw its

schematic.

4. Write a program to interface LEDs at Input/ Output Ports, write delay routine and generate 10

different patterns with specified delay.

5. Use of I/O pins for data transfer between two controllers and perform Master and Slave

Communication.

6. Write a program to use different Memory Block for different purpose.(e.g. each block for

different LED patterns). Use switches for selecting different LED patterns.

7. Write a program to erase a particular memory block (as in experiment no. 5) and re-write with

some other LED pattern code. Use switches for selecting different LED patterns.

8. Write a program to use of Timers 0/1 in Timer Mode and generate delay and use this delay to

blink LED as per experiment no.3. Also calculate the delay.

9. Write a program to interface seven segment display

a) Display the numerals from 0-9 at regular interval.

b) Display one character of your name at a time at regular interval

10. Write a program to communicate between PC and Controller using RS232 interface at 9600

baud rate using Window XP hyper-terminal application.

11. Write a program to communicate between two controllers using SPI (Serial Peripheral

Interface) and draw its schematic.

12. Write a program to print Hello World/ Your name using Intel Atom board editor and check the

output on the terminal.

13. Write a program to display MAC address of Intel Atom Board on the terminal and initialize the

serial port.

14. Study the architecture and peripherals of MBED ARM development board and write a program

to display various system parameters.

15. Write a program to interface buzzer and LEDs at I/O ports of ARM MBED board.

16. Write a program to interface LCD to ARM board and display moving message.

17. Write a program to generate variable duty cycle of Pulse Width Modulation (PWM) using

ARM board. Select duty cycle using 8 switches D/P switch.

18. Minor project based on 8051/ATMEGA/ARM/ATOM. Choose a project as per your choice it

should include at least five interfaces from following list-

External

interrupt

Timer/Counter

Sensor: Motion/IR/Sound/

Humidity/Pressure/Temperature

ADC

LCD 4 X 4 keyboard RS232 Interface/I2C/SPI GSM Module

Relay Qwerty Keyboard RTC Bluetooth Module

60

